
Los ácidos carboxílicos constituyen un grupo de compuestos que se caracterizan porque poseen un grupo funcional llamado grupo carboxilo o grupo carboxi (–COOH); se produce cuando coinciden sobre el mismo carbono un grupo hidroxilo (-OH) y carbonilo (C=O). Se puede representar como COOH ó CO2H.
ácido etanoico
Son numerosos los ácidos dicarboxílicos, que se nombran con la terminación "-dioico"Cuando los grupos carboxílicos se encuentran en las cadenas laterales, se nombran utilizando el prefijo "carboxi-" y con un número localizador de esa función. Aunque en el caso de que haya muchos grupos ácidos también se puede nombrar el compuesto posponiendo la palabra "tricarboxílico", "tetracarboxílico", etc., al hidrocarburo del que proceden.
Propiedades Físicas:Los primeros tres son líquidos de olor punzante, sabor ácido, solubles en agua. Del C4 al C9 son aceitosos de olor desagradable. A partir del C10 son sólidos, inodoros, insolubles en agua. Todos son solubles en alcohol y éter.
El punto de ebullición aumenta 18 o 19 º C por cada carbono que se agrega.
Propiedades Químicas
Son ácidos débiles que se hallan parcialmente disociados en solución. El carácter ácido disminuye con el número de átomos de Carbono.
Reaccionan con los metales alcalinos y alcalinos térreos para formar sales.
Con los alcoholes forman ésteres. Al combinarse con el amoníaco forman amidas
Se obtienen por oxidación enérgica de los alcoholes primarios o por oxidación suave de los aldehídos.
derivados de los acidos carboxilicos
Acilo, radical derivado de un ácido carboxílico por separación del grupo -OH de su molécula. La fórmula general de los radicales acilo es R-CO.
La sustitución del grupo hidroxilo, -OH, de un ácido carboxílico por un halógeno da lugar a un haluro de acilo, de fórmula general RCOX. Los haluros de acilo se nombran combinando los nombres del grupo acilo y del haluro. Los grupos acilo se nombran sustituyendo la terminación -ico u -oico del ácido carboxílico por el sufijo -ilo u -oilo; por ejemplo, cloruro de acetilo, CH3-CO-Cl.
Amida, cada uno de los compuestos orgánicos que se pueden considerar derivados de un ácido carboxílico por sustitución del grupo —OH del ácido por un grupo —NH2, —NHR o —NRR (siendo R y R radicales orgánicos). Formalmente también se pueden considerar derivados del amoníaco, de una amina primaria o de una amina secundaria por sustitución de un hidrógeno por un radical ácido, dando lugar a una amida primaria, secundaria o terciaria, respectivamente.
Todas las amidas, excepto la primera de la serie, son sólidas a temperatura ambiente y sus puntos de ebullición son elevados, más altos que los de los ácidos correspondientes. Presentan excelentes propiedades disolventes y son bases muy débiles. Uno de los principales métodos de obtención de estos compuestos consiste en hacer reaccionar el amoníaco (o aminas primarias o secundarias) con ésteres.
Las amidas son comunes en la naturaleza, y una de las más conocidas es la urea, una diamida que no contiene hidrocarburos. Las proteínas y los péptidos están formados por amidas. Un ejemplo de poliamida de cadena larga es el nailon. Las amidas también se utilizan mucho en la industria farmacéutica.
Éster, compuesto formado (junto con agua) por la reacción de un ácido y un alcohol. Puesto que este proceso es análogo a la neutralización de un ácido por una base en la formación de una sal, antiguamente los ésteres eran denominados sales etéreas. Este término es incorrecto porque los ésteres, a diferencia de las sales, no se ionizan en disolución.
Estos compuestos se pueden obtener a partir de ácidos orgánicos y de ácidos inorgánicos. Por ejemplo, un éster simple, el nitrato de etilo, se puede preparar a partir de etanol y ácido nítrico (un ácido inorgánico), y el etanoato de etilo haciendo reaccionar etanol y ácido etanoico (un ácido orgánico). Otro método de preparar ésteres es emplear no el ácido en sí, sino su cloruro. Por ejemplo, el etanoato de etilo se puede obtener por la acción del alcohol sobre el cloruro del ácido etanoico. Otro método importante de obtención consiste en hacer reaccionar las sales de plata de los ácidos con un halogenuro de alquilo (normalmente de yodo). Por ejemplo, el etanoato de etilo se puede preparar a partir de etanoato de plata y yoduro de etilo.
Los ésteres se descomponen por la acción del agua en sus correspondientes ácidos y alcoholes, una reacción que es catalizada por la presencia de los ácidos. Por ejemplo, el etanoato de etilo se descompone en ácido etanoico y etanol. La conversión de un ácido en un éster se denomina esterificación. La reacción entre un éster y una base se conoce como saponificación. Cuando se produce la descomposición de un éster por su reacción con agua, se dice que el éster ha sido hidrolizado.
En general, los ésteres de los ácidos orgánicos son líquidos neutros, incoloros, con olor agradable e insolubles en agua, aunque se disuelven con facilidad en disolventes orgánicos. Muchos ésteres tienen un olor afrutado y se preparan sintéticamente en grandes cantidades para utilizarlos como esencias frutales artificiales, como condimentos y como ingredientes de los perfumes.
Todas las grasas y aceites naturales (exceptuando los aceites minerales) y la mayoría de las ceras son mezclas de ésteres. Por ejemplo, los ésteres son los componentes principales de la grasa de res (sebo), de la grasa de cerdo (manteca), de los aceites de pescado (incluyendo el aceite de hígado de bacalao) y del aceite de linaza. Los ésteres de alcohol cetílico se encuentran en el espermaceti, una cera que se obtiene del esperma de ballena, y los ésteres de alcohol miricílico en la cera de abeja. La nitroglicerina, un explosivo importante, es el éster del ácido nítrico y la glicerina.
Los ésteres como el etanoato de isoamilo (aceite de banana), el etanoato de etilo y el etanoato de ciclohexanol, son los principales disolventes en las preparaciones de lacas. Otros ésteres, como el ftalato de dibutilo y el fosfato de tricresilo se usan como plastificadores en las lacas. El etanoato de amilo se emplea como cebo odorífero en venenos para la langosta, y algunos de los metanoatos son buenos fumigantes. Los ésteres tienen también importancia en síntesis orgánica.
Además, estos compuestos tienen aplicaciones médicas importantes. El nitrito de etilo es diurético y antipirético. El nitrito de amilo se usa en el tratamiento del asma bronquial y de las convulsiones epilépticas, y como antiespasmódico. La nitroglicerina y el nitrito de amilo producen la dilatación de los vasos sanguíneos, disminuyendo por tanto la presión sanguínea. El chaulmugrato de etilo se ha empleado en el tratamiento de la enfermedad de Hansen. El sulfato de dimetilo (utilizado con frecuencia en síntesis orgánica como agente desnaturalizador) y el sulfato de dietilo son extremamente peligrosos en forma de vapor, y deben ser manejados con cuidado.
No hay comentarios:
Publicar un comentario